Kazalo:

MyPhotometrics: Photodiodenverstärker Pro-Version: 6 korakov (s slikami)
MyPhotometrics: Photodiodenverstärker Pro-Version: 6 korakov (s slikami)

Video: MyPhotometrics: Photodiodenverstärker Pro-Version: 6 korakov (s slikami)

Video: MyPhotometrics: Photodiodenverstärker Pro-Version: 6 korakov (s slikami)
Video: myphotonics Verschiebeeinheit 2024, Julij
Anonim
MyPhotometrics: Photodiodenverstärker Pro-Version
MyPhotometrics: Photodiodenverstärker Pro-Version

Dieses Werk je lizenziert unter einer Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International. Eine für Menschen lesbare Zusammenfassung dieser Lizenz findet sich hier.

Je bil Sauron Plus?

Sauron Plus je Pro-Version des 4-Kanal Photodiodenverstärkers Sauron, der mithilfe von geeigneten Photodioden die Strahlungsleistung einer Lichtquelle erfassen kann. Sein Eingangsstrombereich von 20 nA- 5120 nA reichte allerdings nur für Lichtquellen geringer Intensitäten aus. Für die Messung von Lasern war es deshalb notwendig eine spezielle Sphäre aus LEGO zu verwenden, die die Intensität abschwächte und damit eine Übersättigung des Messinstruments verhinderte. Für professionelle Zwecke ist diese Lösung nicht optimal.

Die Pro-Version Sauron Plus je nameščen na 1000-fazni Erhöhung des Eingangstrombereichs z bis 50 mA. Diese Version siech den Anschluss von nur einer Diode vor, jedoch ist eine Messkanalerweiterung mit dem MyPhotometrics Photo-Rack realisierbar. Mit Sauron Plus je res ebenfalls möglich seine Vorgängerversion zu nutzen.

Poudarki:

  • Eingangsstrombereich 20 nA - 50mA ·
  • Auflösung 10-20 bit
  • Integracijezeit 1 - 1024 ms

Anwendungen:

  • Qualitätskontroller
  • Komponentni testi
  • Lebensdauertests
  • Fotometer
  • Merilnik moči

Die Messung der Strahlungsintensität erfolgt weiterhin über eine Photodiode, die einfallendes Licht in einen messbaren Strom umwandelt. Die weitere Verarbeitung dieses Stromsignals ermöglichen mehrere Bausteine, die zusammen ein oszillatorisches Messverfahren erlauben, das einen deutlich höheren Eingangsstrombereich liefert. Durch die spezielle Verschaltung eines Kondensators, oszilliert die über ihn abfallende Spannung in einer Frequenz, die je nach Eingangsstrom variiert. Ein napetostni frekvenčni pretvornik, ki prehaja med resultierenden Spannungsspitzen zu einem signal mit bestimmter Frequenz um. Diese Frequenz kann von dem Mikrocontroller erfasst werden werden. Je höher die aufgenommene Frequenz ist, desto höher ist auch der Eingangsstrom, und somit auch die gemessene Lichtintensität.

V tem priročniku, ki ga je mogoče naročiti, je treba izvesti strojno in strojno opremo ter upravljati mikrokrmilnik. Wir liefern eine functionsfähige Firmware for einen (fast) verodostojen Arduino (Pinbelegung beachten) und Beispiel-LabVIEW ™ -Programm als Nutzeroberfläche. Hiermit steht dem Einsatz von Sauron PLUS im Labor nichts mehr im Weg.

Začnimo…

Korak: Aufbau Und Funktion Des Boards

Aufbau Und Funktion Des Boards
Aufbau Und Funktion Des Boards

Die goldfarbene Buchse (1), welche an der Platinenkante befestigt ist, dient als Anschluss einer Photodiode mittels Koaxialkabel. Folgend dient ein Relay (2) dazu zwischen den Varianten Sauron (Education) und der Pro-Variante Sauron Plus zu wählen. Mithilfe des hier verwendeten Arduino Nano (3) je dieser Schalter ansteuerbar. Der Aufbau der Education Version je bereits in dem Instructable erklärt und befindet sich in dem grün markierten Bereich.

Für die Verwendung von Photodioden mit Signalstärken von mehreren mA is es notwendig das Signal der Diode noch vor der eigentlichen Messung zu dämpfen. Dazu dient der Transimpedanzverstärker (TIA) (4). Er schwächt das Messsignal mithilfe einer Widerstandskaskade (5) insoweit ab, dass an seinem Ausgang maximal 100uA fließen. Die Ansteuerung des TIA (und damit auch die Wahl des Messbereichs) erfolgt wiederum durch den Arduino und einen CMOS Multiplexer (6).

Sauron Plus misst die Strahlungsintensität mithilfe eines oszillatorischen Messverfahrens. Dazu dient der VFC (Pretvornik napetosti v frekvenco, zu deutsch auch U/f- Wandler) (7). Als Referenzspannung dient die Spannungsquelle (8), die man als schwarzen Block auf der Platine erkennen kann. Sie liefert 15V die durch einen 1: 1 Spannungsteiler auf die Hälfte abgesenkt werden. Die resultierenden 7, 5V dienen im folgenden Verlauf der Signalverarbeitung als „Triggerpunkt“eines Komparators der Bestandteil des VFC ist. Die Spannung liegt am „Threshold“-Eingang an. Der Komparator vergleicht diese mit der Spannung, die am „Comp_Input“-Eingang anliegt.

(Hinweis: Wo genau sich diese Eingänge befinden, lässt sich im SauronPlus.sch nachvollziehen.)

Sobald eine höhere Spannung als 7, 5V anliegt, schaltet der VFC einen konstanten Strom, der den Kondensator C5 (9) auflädt. Zusammen mit einem Operationsverstärker (10) C5 einen Integrator. Fließt jetzt Strom aus dem TIA, wechselt die Eingangsspannung des Integrators die Polarität und der Kondensator entlädt sich. Die Ausgangsspannung, welche gleichermaßen der “Comp_Input“des VFC ist, sinkt. Sobald sie unter den Triggerpunkt fällt, schaltet der VFC den Ausgangsstrom ab. Durch diesen Vorgang oszilliert die Spannung, sodass Ladungsspitzen erkennbar sind. Diese lassen sich mit dem Arduino Nano zählen. Največji vhod (polni razpon) pri -10V am Eingang des Integrators liefert der VFC eine Frequenz von 100kHz. Da mit steigender Stromstärke das Entladen des Kondensators beschleunigt wird, spiegelt sich die Stromstärke in der resultierenden Frequenz wieder.

Einige der übrigen Bauteile dienen zur Verbesserung des Messignals, wie beispielsweise Pi-Filter (11) z Glätten der Referenzspannung and Potentiometer (12) z Entfernen von Offsets, resultierend durch Kriechströme. Außerdem befinden sich mehrere Schutzvorrichtungen auf der Platine, wie beispielsweise Dioden (13), die vor zu hohen Strömen schützen. Desweiteren liefert ein Step-Down Converter (14) kot Spannungsquelle von 15V die vom Arduino bencinski pretvornik Versorgungsspannung von 5V and ein IO-Expander (15) de Arduino weitere notwendige IO-Pins zur Ansteuerung der zahlreichen Bauteile.

Hinweis: Diese Funktionsbeschreibung ist grob zusammengefasst, da die Beschreibung der komplexeren Funktionen den Umfang dieses Instructables überschreiten würde. Wer sich tiefgehender über die Signalverarbeitung mittels VFC beschäftigen möchte, kann folgende Seiten besuchen:

  • U/f_Wandler
  • Datenblatt LM331AN

2. korak: Benötigte Bauteile, Platine Und Zubehör

Benötigte Bauteile, Platine Und Zubehör
Benötigte Bauteile, Platine Und Zubehör
Benötigte Bauteile, Platine Und Zubehör
Benötigte Bauteile, Platine Und Zubehör

Zunächst werden einige Bauteile benötigt, die großteils bei dem Anbieter Farnell erhältlich sind. Für das Hochladen des bereitgestellten Warenkorbs ist eine Registration auf der Seite www.farnell.de notwendig. Jetzt muss die Datei BOMPLUS.xlsx heruntergeladen und unter "Meine Bestellungen" - "Stückliste hochladen" ausgewählt werden. Der Warenkorb wird automatisch zusammengestellt.

Der Warenkorb enthält die exakten Bauteilmengen, die für Sauron Plus notwendig sind. Wir empfehlen jedoch die Stückzahl einiger Komponenten zu erhöhen. Dies gilt besonders bei Teilen, die bei der Verarbeitung schnell verloren gehen können (Widerstände, Kondensatoren).

Unter OSH Park ist die Bestellung der Platine mit dem Button Naročite zdaj möglich. Alternative einfach das Sauron+.brd file runterladen und bei einem verobigen anderen PCB-Fertiger in Auftrag geben.

(Hinweis: Diese Platine kann auch für das Laserleistungsmessgerät als Stand-Alone-Lösung genutzt werden, da die Anschlüsse für das Display und den Joystick bereits vorhanden sind.)

Weitere notwendige Bauteile sind:

  • Der AS89010 der Firma asm Sensors Germany wird bislang direct vom Hersteller geordert. Der Verkaufspreis (Stand Mai 2017) liegt bei 6, 97 € je Einheit. Aufgrund firmeninterner Umstellungen gibt es den AS89010 allerdings schon bald bei arrow.com ali futureelectronics.com.
  • 2x der Arduino Nano (Nano Atmega 328P) z. B. hier für weniger als 5 € (Da nicht alle Pins notwendig sind, sollte das Board keine verlöteten Steckerleisten besitzen.)

(Hinweis: Es kann bei Bedarf auch ein Arduino Nano für das Board verwendet, und ein anderer Controller für die Messdatenaufnahme eingesetzt werden. Dafür kann ein fast believebiger Arduino verwendet werden. Nutzer überlassen. Bei der Erstellung dieses Projekts wurde jedoch auch hier ein Arduino Nano ausgewählt.)

  • Die SMA- Buchse, die Stiftleisten (4x) und ein übriger Widerstand (1x) z. B bei mouser.de
  • Koaksialkabel RG174 zB. bei voelkner.de
  • Übrige Kleinteile: 3, 3uF Kondensator (4x), das Relay und eine 100uH Spule (2x) z. B. bei digikey.de

(Hinweis: Sicher gäbe es einige Bauteile, die hier extra aufgeführt sind, auch bei farnell.com. Allerdings sind die Bauteile so gewählt, dass sich der Aufwand bei unterschiedlichen Distributoren zu bestellen Preis-Leistungs-technisch dur möglicherweise nicht beachtet wird, ist hier die Abweichung eines Bauteils vom angegebenen Messwert in Prozent. Dies ist ein Qualitätsmerkmal, was in manchen Bereichen der Schaltung von Sauron Plus nicht zu umgehen ist.)

Prinzipiell je jegliche Art einer Photodiode mit dem Messsystem kompatibel. Wir empfehlen die Nutzung von Dioden der Typen

  • BPX61 ali oder
  • OSD-50-5T

Die BPX61 je kost, ki je nameščena v Lösungu, umrla je v Anindungen und Versuche ausreicht.

Der zweite ausgewählte Dioden Typ, die OSD-50-5T, zeichnet sich nicht nur durch ihre exzellente Empfindlichkeit aus, sondern leider auch durch einen sehr hohen Preis. Es sind häufig Angebote, z. B. bei Ebay, AliExpress usw., zu finden. Eine kurze Recherche dazu lohnt sich. Die diode eignet sich mit einer aktiven Fläche von 50qmm for Messungen mit einer direkten Einstrahlung der Quelle, auch ohne Messkugel. Allerdings ist die Diode bereits bei Leistungen unter 1mW übersättigt und übersteuert aus diesem Grund bei der Messung konventioneller Laserpointer. Die Verwendung der OSD-50 je deshalb und aufgrund ihres hohen Preises nur für professionelle/ semiprofessionelle Laboreinsätze zu empfehlen.

3. korak: Anfertigen Der Hardware

Anfertigen Der strojna oprema
Anfertigen Der strojna oprema

Zum Anfertigen der Platine sollte zuerst mithilfe des Stencils Lötpaste auf die vorgesehenen Pads aufgetragen werden. Als Lötpaste empfehlen wir eine bleifreie Variante, z. B. SMD Solderpaste von Chipquik, zu verwenden, da ansonsten das Einatmen des entstehenden Rauchs beim Erhitzen gesundheitsschädlich wirken kann. Danach sind die einzelnen Bauteile an den richtigen Stellen zu platzieren. Dabei sollte bei den kleinen Bauteilen begonnen werden, um das Bestücken einfacher zu gestalten. Zuletzt muss die bestückte Platine erhitzt werden, damit die Lötpaste die Bauteile an die Platine binden kann. Kleine Ungenauigkeiten in der Platzierung der Bauteile sind akzeptabel, beim Aufschmelzen der Lötpaste "zieht" die Oberflöchen des Oberflöchens

Die Lötung erfolgt idealerweise mit einem professionellen Lötofen z. B. einem Dampfphasen Lötofen. Da bi odgovorili na vprašanje, ali je Geräts sehr teuer ist empfiehlt sich beispielsweise eine kostengünstigere Lösung v Form eines Reflow-Kits, das von PCB Pool angeboten wird.

(Hinweis: In unserer Vorgängerversion der Verstärkerplatine bot sich auch die improvisierte Variante der Erhitzung der Platine mit der Verwendung einer einfachen Herdplatte, zB einer Camping Herdplatte, an. Nach einem kurzen "Aufrauchen" der Lögös der Lögös der Lögös der Lögös der Löhten eine kleinere Platine handelte, war der Lötvorgang leichter zu beobachten und zu controllieren. Deshalb ist diese Variante für Sauron Plus nicht zu empfehlen.)

Danach folgt das Anbringen der Bauteile mit Steckverbindungen. Die einzelnen Steckverbinder sollten durch Lötungen mit den Kontakten verbunden werden (z. B. mit solch einem Lötkolben und Lötdraht).

Wie die Fertigung in einzelnen Schritten aussieht, wird im Video vorgestellt

Überschüssige Lötpaste führt bei SMD Bauteilen wie dem AS89010 mit einem Beinchenabstand von 0.635 mm schnell zu Kurzschlüssen nach dem Löten. Normalerweise lässt sich durch kurzes Erhitzen mit dem Lötkolben mit Hohlkehle der überschüssigen Zinn entfernen.

Wie eine Photodiode mit einem Koaxialkabel verbunden wird, kann im Instructable Sauron nachgelesen werden.

4. korak: Kommunikation Zwischen Arduino Und LabVIEW - Konfiguracijski LabVIEW

Komunikacija Zwischen Arduino Und LabVIEW - Konfiguracijski laboratorijVIEW
Komunikacija Zwischen Arduino Und LabVIEW - Konfiguracijski laboratorijVIEW
Komunikacija Zwischen Arduino Und LabVIEW - Konfiguracijski laboratorijVIEW
Komunikacija Zwischen Arduino Und LabVIEW - Konfiguracijski laboratorijVIEW
Komunikacija Zwischen Arduino Und LabVIEW - Konfiguracijski laboratorijVIEW
Komunikacija Zwischen Arduino Und LabVIEW - Konfiguracijski laboratorijVIEW
Komunikacija Zwischen Arduino Und LabVIEW - Konfiguracijski laboratorijVIEW
Komunikacija Zwischen Arduino Und LabVIEW - Konfiguracijski laboratorijVIEW

Für die grafische Darstellung der Messergebnisse lässt sich die Entwicklungsumgebung LabVIEW ™ verwenden. LabVIEW ™ je für Studenten und Schüler kostengünstig zu erwerben. siehe hier

(Hinweis: Das UserInterface for Sauron benötigt die Version NI LabVIEW ™ 2016)

Za komunikacijo z Arduinom je vmesnik Modul LabVIEW za Arduino nameščen v paketu JKI VI Package Manager za namestitev. Falls dieser noch nicht installliert ist, ist der Package Manager hier zum Download erhältlich. Achte darauf, dass der NI VISA Treiber installiert ist. Dies ist der Treiber, der für die Kommunikation mit dem Arduino zuständig ist.

Lade die.zip hendiketer Datei LabVIEWPlus.zip. Die darin enthaltene Datei SPLUS_RACK_4_SHUTTER.vi beinhaltet das mit LabVIEW ™ entwickelte virtuelle Instrument SauronPlus VI. Die VI stellt die Basisfunktionalitäten für die Kommunikation und Konfiguration von Sauron Plus zur Verfügung.

(Hinweis: Die Datei muss unbedingt in dem heruntergeladenen Ordner mit allen übrigen Dateien verbleiben, da die VI auch auf diese zugreifen muss.)

5. korak: Kommunikation Zwischen Arduino Und LabVIEW - Konfiguracija Arduino

Komunikacija Zwischen Arduino Und LabVIEW - Konfiguracija Arduino
Komunikacija Zwischen Arduino Und LabVIEW - Konfiguracija Arduino
Komunikacija Zwischen Arduino Und LabVIEW - Konfiguracija Arduino
Komunikacija Zwischen Arduino Und LabVIEW - Konfiguracija Arduino
Komunikacija Zwischen Arduino Und LabVIEW - Konfiguracija Arduino
Komunikacija Zwischen Arduino Und LabVIEW - Konfiguracija Arduino

Napajalniki za Arduino USB in računalnik so na voljo. Dieser Controller kontrolliert die Messdatenaufnahme.

Če želite program, ki je nameščen z Arduinom, prenesti odprtokodno programsko opremo IDE Arduino, ki je na voljo. To je edino, kar je potrebno za komunikacijo z Arduino za bogatejše COM -vrata (USB).

Najnovejša programska oprema FirmwareForBackplain.zip je Betrieb von Sauron Plus z Arduino Nano, ki ni namenjena vdelani programski opremi. Diese Firmware erlaubt die Konfiguration und das Auslesen der Messdaten mit der ebenfalls bereitgestellten LabVIEW ™ -VI. Die Datei Sauron.ino wird auf den Controller geladen, der die Messdatenaufnahme kontrolliert.

Der Arduino muss dann, z. B. mithilfe von žensko-samica Jumper Kabeln, mit dem Arduino auf der Platine verbunden werden. Dazu ist das Pinout (siehe oben) des Arduino hilfreich. Der Ausschnitt der Platine (s.o.) zeigt welche Pins miteinander verbunden werden. Dabei werden die Pins SDA, SCL in GND z dragulji gleichnamigen verbunden. V+ glasnost z 5V-Ausgang des Arduino Nano in INT_RDY z INT0 pin verbunden werden.

Die Firmware for Arduino Nano, der sich auf der Platine von Sauron Plus befindet, wird in der Datei ArduinoNANO_SPLUS.zip z verfügung gestellt. Die Datei SauronPLUS.ino wird jetzt auf den Platinencontroller gespielt.

Korak 6: Anwendung Benutzerinterface

Anwendung Benutzer vmesnik
Anwendung Benutzer vmesnik

Nach dem Laden der Sauron PLUS VI lassen sich hier über das Benutzerinterface die Betriebsparameter einstellen.

Diese VI ist auch für die Nutzung mit dem Photo Rack geeignet. Aus diesem Grund stellt die VI ein Userinterface zur Bedienung von vier Kanälen gleichzeitig bereit.

  • Schalter oben: schalten jeweiligen Messkanal für die Messung ein
  • CH 1- CH4: schaltet den jeweiligen Messkanal für die Einstellungen mittels der runden Bedienelemente ein oder aus
  • Moč: zeigt die auf die jeweilige Photodiode einfallende Leistung in W (Voraussetzung: Die Empfindlichkeit der Photodiode ist bekannt und in der Sauron VI mittels eines Kalibrierfiles hinterlegt.)
  • Valovna dolžina: Die Wellenlänge der Lichtquelle muss bekannt sein und eingetragen werden
  • COM: Auswahl des COM Ports zur Verbindung mit dem Arduino (kann je nach Mikrocontroller verschieden sein).
  • Raven dB: Auswahl der Dämpfung v dB
  • Čas integracije v ms: Auswahl der Integrationszeit des Messsingals v ms
  • Datoteka za umerjanje: Jeder Messkanal benötigt ein eigenes File, wellings die Kalibrierung der jeweiligen Diode beinhaltet. Die Files sind für die zwei verschiedenen Diodentypen in der Firmware des Systems verarbeitet und liegen ebenfalls in dem Ordner indem sich die VI befindet.

(Hinweis: Die Datei None pd kann ausgewählt werden um eine 1: 1 Messenger ohne Kalibrierung durchzuführen.)

  • Detektor: zeigt dann den ausgewählten Messkopf an
  • Messung: zagon Messung
  • Način v živo: zagon neprekinjeno Messenger

(Hinweis: Diese Nutzeroberfläche ist nur ein Beispiel, wie Sauron Plus angewendet werden kann. Es können auch andere Nutzerinterfaces angepasst werden, um Sauron Plus je nach Bedürfnis zu verwenden.)

Priporočena: